probabilidade

Consideremos a experiência do lançamento de uma moeda e leitura da face voltada para cima. Ao realizarmos n vezes a experiência, se obtivermos m vezes o resultado “cara” é  . É claro que lançada a moeda o resultado é imprevisível, pois não podemos dizer com absoluta certeza que o resultado será “cara”, pois nada impede que dê “coroa”.
A experiência provou que conforme se aumenta n, ou seja, à medida que mais lançamentos da moeda são feitos, a frequência relativa  tende a estabilizar-se em torno de  .

Exemplo:
Em 1000 lançamentos (n = 1000), 529 resultados foram favoráveis (m = 529), o que nos dá para  o valor de 0,529.
Em 4040 lançamentos, 2048 resultados foram favoráveis o que nos da  = 0,50693, isso significa que no lançamento de uma moeda “honesta” a probabilidade de se obter “cara” é  . Essa experiência foi realizada por Kerrich e Buffon.
A definição que permite calcular teoricamente a probabilidade de um evento, sem realizar a experiência é:

Dado um espaço amostral S, com n (S) elementos, e um evento a de S, com n(A) elementos, a probabilidade do evento A é o P(A) tal que:

Propriedades

Sendo S ≠  um espaço amostral qualquer, A um evento de S e  o complementar de A em S, valem as seguintes propriedades: 

? P( ) = 0 
? P(S) = 1 
? 0 ≤ P(A) ≤ 1 

? P(A) + P( ) =1

 

Dados dois eventos A e B de um espaço amostral S a probabilidade de ocorrer A ou B é dada por:

P(A U B) = P(A) + P(B) – P(A ∩ B)



Verificação:
O Número de elementos de A U B é igual à soma do número de elementos de A com o número de elementos de B, menos uma vez o número de elementos de A ∩ B que foi contado duas vezes (uma em A e outra em B). Assim temos:

n(AUB) = n(A) + n(B) – n(A∩B)
Dividindo por n(S) [S ≠ ] resulta



P(AUB) = P(A) + P(B) – P(A∩B)

Exemplo:
Numa urna existem 10 bolas numeradas de 1 a 10. Retirando uma bola ao acaso, qual a probabilidade de ocorrer múltiplos de 2 ou múltiplos de 3?



A é o evento “múltiplo de 2”.
B é o evento “múltiplo de 3”.

P(AUB) = P(A) + P(B) – P(A∩B) =